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Abstract:

This paper studies an estimation problem of a dominant resonance frequency from time-series data. We

proposed an estimation method which incorporates system identification technique into time-series analysis. However,
this method has a problem that the estimated resonance frequency is biased. In this paper, a new method which uses
subspace method is proposed based on time-series data. The key idea of this method is to use an auto-covariance function
of the time-series data instead of impulse response or ordinary input-output data. Hankel matrix of the time-series is
constructed by the auto-covariance function. Then, subspace method is applied to the Hankel matrix, and the resonance
frequency can be calculated. Effectiveness of the method is examined through numerical examples.
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1. INTRODUCTION

This paper studies an estimation problem of a domi-
nant resonance frequency of oscillation mode from time-
series data. Resonance frequency is one of the most im-
portant physical quantity, so many methods to estimate
the resonance frequency from time-series data have been
researched in various fields. For example, time-series
data is often fitted to an AR (Auto-Regressive) model,
and spectrum analysis is conducted. In general, however,
time-series data includes not only oscillation modes but
also other dynamics and observation noise, so the domi-
nant resonance frequency cannot be estimated only by the
ordinary time-series analysis. A celebrated Kalman Filter
[1] is often applied to time-series analysis. However, it is
necessary to use a model which describes the dynamics
exactly for obtaining good estimates. So, it is difficult to
apply the Kalman filter to our problem in which the other
dynamics exists. It is required to remove the other dy-
namics and observation noise from time-series data so as
to estimate resonance frequency accurately. We proposed
an estimation method of a dominant resonance frequency
which incorporates high-order system identification tech-
nique into time-series analysis [2]. However, this method
often gives biased estimate.

In this paper, a new method which employs subspace
method [3] is proposed based on time-series data. The
key idea of the proposed method is to use an auto-
covariance function of the time-series data instead of an
impulse response or ordinary input-output data [4]. Han-
kel matrix of the time-series is constructed by the auto-
covariance function. Then, the subspace method is ap-
plied to the Hankel matrix. Based on the estimated dy-
namics, the dominant resonance frequency can be calcu-
lated. Finally, effectiveness of the method is examined
through numerical examples.

2. PROBLEM FORMULATION

In this paper, a problem to estimate a dominant fre-
quency of time-series data is considered. It is assumed
that the time-series y(k) can be modeled by a series
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Fig. 1 Time-series modeling.

connection of the dominant frequency which can be de-
scribed by 2nd-order vibration system P(z) and other dy-
namics which is parasitic element ()(z), shown in Fig.1.

From Fig.1, the 2nd-order oscillation mode of interest
P(z) and unknown other dynamics )(z) are combined as
G(z) which is driven by white noise w(k). Moreover, the
measured time-series data y (k) is contaminated by obser-
vation noise (k) which is assumed to be white-Gaussian.
Then, time-series data y(k) is expressed as

y(k) Q(2)P(2)w(k) + &(k)
G(z)w(k) + (k).

D

The purpose of this paper is to estimate the dominant
resonance frequency of oscillation mode P(z) from time-
series data y(k) accurately.

3. TIME-SERIES ANALYSIS USING
SYSTEM IDENTIFICATION

3.1 Estimation procedure

In this section, an estimation method of a dominant
resonance frequency which incorporates system identi-
fication technique into time-series analysis [2] is briefly
summarized. In this method, high-order time-series anal-
ysis is applied to time-series data y(k), and input is recon-
structed from the high-order time-series model and time-
series data y(k). Next, a band-pass filtering is applied to
the reconstructed input-output data, then 2nd order ARX
(Auto-Regressive eXogenous) model [5] is estimated by
system identification theory. The resonance frequency is
estimated from coefficients of denominator of the esti-
mated ARX model.
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The procedure of the method is summarized as fol-
lows.

Step 1 Fitting to AR Model

Time-series data y (k) is fitted to a high-order (ex. 20th
or 30th) AR model

A(g)y(k) = w(k) 2)
where w(k) is driving white noise, and
Alg) =14+ aqg " + ... +ang™™ 3)

By using the least-squares method, the estimate A(g) is
obtained.

Step 2 Reconstruction of input data

From y(k) and the estimated A(g), w(k) is recon-
structed as follows

w(k) = Aq)y(k).

Step 3 System Identification with ARX Model

System identification is applied to the system whose
input is w(k) and output is y(k). As data preprocessing,
a band-pass filtering whose band-pass includes the domi-
nant resonance frequency of the system is applied to both
input data and output data.

Then, 2nd order ARX model

“)

Ar(q)y(k) = Br(q)w(k) + &(k) ©)
is estimated, where

Ar(g) = l1+aig ' +axq™? (6)

Br(q) = big ' +byq? @)

and (k) is the equation error.

Step 4 Calculation of Resonance Frequency

Characteristic roots A\; (i = 1,2) of Ar(q) are com-
puted. Then, the resonance frequency v, is estimated as

2 — 2

vp= o — Hz (8)
where ¢ and d are computed by

In (Re()\i)2 + Im(Ai)Q)
c = ©))
2AT
= —— 10
d AT arctan Re(\y) (10)

AT is the sampling time.

3.2 Numerical simulation

To examine effectiveness of the procedure, a simple
example is considered. The simulation condition of the
example is summarized in Table 1.

A series connection of the dominant 2nd-order vibra-
tion system P(z) and the other dynamics Q(z) whose
resonance frequency is higher than that of P(z) is as-
sumed as G(z). G(z) is driven by white noise. Moreover,
the measured time-series y (k) is contaminated by obser-
vation white noise £(k) whose SN ratio is 20dB, then
time-series y(k) is measured. Time-series data y(k) is
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Table 1 Simulation condition.

Resonance frequency of P(z) 49.50Hz
Resonance frequency of Q(z) 79.71 Hz
Observation white noise ¢ SN ratio 20 dB
Number of data 20000
Sampling rate  5ms
Order of AR model 20
Bandpass filtering 30~ 70Hz

y (t)

5
Time (s)

Fig. 2 Time-series data y(k).

shown in Fig.2. Time-series analysis using system iden-
tification is applied to the time-series y(k), and the domi-
nant resonance frequency of oscillation mode P(z) is es-
timated.

Time-series data was fitted to a 20th-order AR model.
Estimated driving white noise w (k) and time-series y (k)
were band-pass filtered whose band-pass was 30~ 70Hz
including the resonance frequency of P(z), that is,
49.50Hz.

The mean value and standard deviation of the esti-
mated resonance frequency of P(z) was given by

v, =47.64+0.1391 Hz (11)

where the simulation was conducted ten times. From
Eq.(11), resonance frequency of P(z) was estimated
about 2Hz smaller than the true value. This method gave
biased estimate, because it cannot remove the effect of
other dynamics and observation noise from time-series
data. Therefore, it is necessary to develop a method to
remove other dynamics and observation noise from time-
series data, and estimate a dominant resonance frequency
more accurately.

4. SUBSPACE METHOD USING
AUTO-COVARIANCE

To estimate the dominant resonance frequency of os-
cillation mode from the time-series data accurately, a
new method which uses the subspace method is pro-
posed. The important point is to use an auto-covariance
function of the time-series data instead of an impulse
response or ordinary input-output data. Hankel matrix
of the time-series is constructed by the auto-covariance
function. Then the singular value decomposition is ap-
plied to the Hankel matrix. According to the size of the
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singular values, the Hankel matrix is divided into signal
subspace and noise subspace. From the signal subspace,
the dominant resonance frequency is calculated.

4.1 Modeling

Time series data y(k) is described by discrete-time
state space model:

x(k+1) Fz(k) + w(k), (12)
y(k) = hTz(k)+e(k) (13)

where AT is the sampling time, (k) = x(kAT) is the
state vector, y(k) = y(kAT) is the output, respectively.
F and AT are system matrices with appropriate order.
System noise w(k) and observation noise (k) are both
independent Gaussian white noises.
4.2 Estimation procedure[4]

The procedure of the method is summarized as fol-
lows.
Step 1 Construction of Hankel Matrix

Hankel matrix

Hp+17q = HankRi
f?o }?1 e Rg—l
R Ry -+ R,
= . . (14
Rp Rpﬂ Rerqfl

is constructed in terms of the auto-covariance function

Ri== Y ykyy(k—i) (1)

k=1+1
where y(k) is the time-series data.

Step 2 Singular Value Decomposition

Singular value decomposition is applied to the Hankel
matrix eq.(14), that is,

Hpi1.q usyT
S 0 v."
-t w3 2 ][]
= Op1iC (16)

where ©p+1 is the observability matrix and C is the con-
trollability matrix. U and V are orthonormal matrices,
that is, UTU = I, VTV = I. Subscript ’s’ means
signal subspace, and "n’ means noise subspace. ¥ is a
diagonal matrix, whose elements oy, *,0,,, are singular
values and arranged in descending order. Other singu-
lar values 0,41,0m+2° "+ Which composes ¥, are suffi-
ciently small. From the singular values plot, system order
m is estimated.

Step 3 Calculation of F and h™

~T A A
Estimated values (h , F') are computed from O, ;.
Op1 is decomposed as follows

X h
Opp1 = USY?= . (17)

S

h is found in the first block-row of @p+1. F is obtained
from the shift invariance property

~T ~ ~T
F h
AT ~2 ~T ~
T . h h F R
OlR" F) = - P
W AT
= Op(h' F)F (18)
and the least-square method
. P R A .
F o= Op(h F) OL(h",F)
T o T T
= (Op(h ,F) Op(h ,F))
AT AT T
Op(h ,F) Ol(h ,F). (19)

Step 4 Calculation of Eigenvalues
Eigenvalues \; (i = 1,2) of F" are computed as fol-
lows
det(F—\I) = 0. (20)

Step 5 Calculation of Resonance Frequency

From eigenvalues );, resonance frequency v, of the
system is estimated as

2 _ 2
- _ _~ H 21
Vp 27T z ( )
where
In (Re(\;)? + Im()\;)?)
© = 2AT @22
= —— . 2
d AT arctan Re() (23)

S. NUMERICAL SIMULATION

To examine effectiveness of the procedure, a simple
numerical example is reconsidered. The simulation is
conducted under the same conditions in Table 1. Hankel
matrix size was selected 10 x 10. Frequency characteris-
tic of G(z) and power spectrum of time-series data y(k)
are shown in Fig.3. Singular values of the Hankel matrix
are shown in Fig.4. The mean value and standard devia-
tion of the estimated resonance frequencies of P(z) and

Q(z) were
vpi:y = 49.42+0.08951 Hz (24)
Vo) = T9.65+0.2477 Hz 25)
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Fig. 3 Frequency characteristic of G(z) (blue solid line)
and power spectrum of y(k) (red dotted line).

where simulation was conducted 10 times.

From Fig.4, the first 4 singular values are larger than
the other ones. It might be considered that the order of
the system G(z) is 4. From 5th to 10th singular values
express noise subspace. From two pairs of big singu-
lar values, that is, first-second singular values pair and
third-forth singular values pair, there are two 2nd order
systems. From Egs.(24),(25), the resonance frequencies
of P(z) and @(z) are estimated accurately. Conclusion
is that the proposed method can estimate resonance fre-
quency of the oscillation mode accurately in the presence
of other dynamics and observation noise.

6. CONCLUSION

Estimation of a dominant resonance frequency from
time-series data using subspace method has been pro-
posed. The method can estimate resonance frequency
of a dominant 2nd-order vibration mode accurately from
time-series in the presence of other dynamics and obser-
vation noise. Singular values plot shows the order of sig-
nal subspace clearly from the size of the singular values.
Also, it makes the effects of P(z), Q(z) and observation
noise visible. From the numerical simulation, the method
can estimate resonance frequency more accurately than
time-series analysis using system identification.
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Fig. 4 Singular value plot.
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