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Abstract: In general, structure of a system to be identified is unknown for users a priori. This makes the model complex
and high order structure. In this paper, we introduce the asymptotic method (ASYM) to deal with the problem. ASYM
calculates a high-order model using the well-known least squares method, then reduces the identified model to a simple
one. For this model reduction, various model reduction techniques such as balanced realization and output error reduction
were developed. In this paper, a new method to reduce the high-order model using the particle swarm optimization in the
frequency domain is proposed. Effectiveness of the proposed method is examined through numerical examples.
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1. INTRODUCTION

System identification is sophisticated methods to ob-
tain mathematical models based on input and output data
of the system. However, models obtained by the conven-
tional system identification methods often have complex
structure with high order. In general it is difficult to use
them for control systems design.

In this paper, we make use of the asymptotic method
(ASYM) to deal with the problem. The ASYM consists
of two steps. In the first step, a high-order model is iden-
tified by using the least squares method, and in the second
step, the high-order model is reduced by minimizing the
negative log-likelihood function based on the asymptotic
theory [1]. For this minimization, Wahlberg proposed
the frequency weighted balanced realization [2], and Zhu
used the output error method [3]. In this paper, we pro-
pose a new ASYM model reduction idea of curve fitting
in the frequency domain by using modal analysis, bro-
ken line approximation and Particle Swarm Optimization
(PSO) [4].

2. ASYMPTOTIC METHOD

Consider a single input, single output (SISO) linear
discrete-time system described by

y(k) = G°(q)u(k) + H(q)e(k) (D

where ¢ denotes the time-shift operator. G°(¢q) and
H¢(q) are the system to be identified and the noise trans-
fer functions, respectively. u(k) and y(k) are the input
and output, respectively, and e(k) is white noise with zero
mean and variance R. The purpose of this paper is to es-
timate G°(q) in Eq.(1) accurately based on input-output
data.

2.1 The asymptotic theory

Ljung proposed the asymptotic theory [1]. Suppose
that both the model order n and the number of the data
samples for the estimation N tend to infinity, the main
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results of this theory are summarized as follows.
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B, (w) = |[H(¢/*) R,

®, and ®, denote the power spectrum of u and v, re-
spectively, ®,,. denotes the cross spectrum between u and
e. N(0, P, (w)) means Gaussian distribution with zero
mean and variance P, (w).

Eq.(2) means that the model estimates are consistent
asymptotically. Eq.(3) means that the error of the trans-
fer functions at each frequency converges to a Gaussian
distribution. These results are proved in [1].

2.2 High-order estimation

Dividing Eq.(1) by H(q),
o = a8+ <) v

is obtained. This form is considered to be a high-order
ARX model, because it can be expressed by

A%(q)y(k) = B°(q)u(k) + e(k) (©)

where A°(¢) and B°(q) are polynomials in ¢, respec-
tively. So, the coefficients of these polynomials can be
easily estimated by the ordinary least-squares method.
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Then, the estimated system model G™(q) and esti-
mated noise model H"(q) are derived as

N

An _B(q) rn _L
G"(q) = i) H"(q) = i) (7)

respectively, where hat denotes the estimate.

2.3 Asymptotic variance of the system model

From Eq.(4), an expression for the asymptotic vari-
ance of the system model is approximated by

A - n P, (w)R
Gy ()]~ = . 8
var[Gy (e/)] N o) = [Bue ()2 (®)
In particular, ®,. = 0 for the open-loop case. Thus
Eq.(8) is simplified to
AN (L JW\T A E ¢, (OJ)
var[G (e’)] ~ N () )

Eq.(9) means that the asymptotic variance of the system
model at some frequency w is proportional to the model
order n and the noise power spectrum ®,, and inverse
proportional to the number of the samples and signal
power spectrum ®,,. Thus, the intensity of input signal
should be strengthened for the frequency band of inter-
est.

Then, negative log-likelihood function [2] in the fre-
quency domain is defined as

where G! is a reduced system model. Note that ®,, can be
replaced by estimated noise transfer function H™(e).
By minimizing Eq.(10) with respect to G'(e?*), the
asymptotic maximum likelihood estimator is obtained if
the estimate converges to the global minimum.

3. MODEL REDUCTION USING SYSTEM
IDENTIFICATION

Zhu proposed a minimization method based on out-
put error system identification method [3]. Let N — oo
and apply Parseval’s theorem to Eq.(10), the negative log-
likelihood function (10) becomes

v=l§:{(é"(q)—él(q)) u(k) }2 (an
N~ H"(q)

in the time domain. This form corresponds to the output
error criterion of system identification in which input and
output are (1/H™)u and (G™/H™)u, respectively. This
can be expressed by

_ 1 1
] dw (10)

9" (k) = G™(q)uy (k). (12)
where
1
k) = =
06) = g sul®)

Then, we can use an OE model for identification. In a
similar way, the reduced disturbance model can be ob-
tained from the high order estimate H". Finally, the
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model structure becomes OE model (or BJ model includ-
ing the disturbance model). The model order is selected
by minimizing the asymptotic criterion (ASYC)

1 /™ - . 2 n®,
Vasyc = ﬁ/ G"(q) — G' (Q)‘

N9,
4. MODEL REDUCTION USING CURVE
FITTING WITH PSO IN THE
FREQUENCY DOMAIN

4.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO [4]) is one of the
most powerful metaheuristic optimization methods. PSO
optimizes an objective function by updating positions and
velocities of many particles which search the optimal so-
lution.

dw.

4.2 System identification using frequency response
based on PSO
Wada and Sugie proposed a system identification
method using frequency response based on PSO [5]. This
method consists of two steps. First step is to obtain a fre-
quency response of the system. Second step is to mini-
mize the criterion

J= Z'an[(Mwn - Mwn)2 + P, _pwn)Q] (13)

using PSO, where M,, and P, denote gain [dB] and
phase [deg] of the system at frequency w,,, hat denotes the
model obtained by PSO and v, is frequency weighting
parameter. PSO optimizes the parameters a; and b; (i =
0,1,--+,n4,, 7 =0,1,--+,nyp) of the transfer function
G(S) _ bann" +"'+b18+b0-
s§Ma + -+~ 4+ a18+ ag
This method is easy to understand. However, the crite-
rion (13) includes two quantities in different units. Thus,
this criterion might need scaling if there is large differ-
ence between these values.

(14)

4.3 Model reduction using curve fitting in the fre-
quency domain

The minimization of the likelihood function (10) can
be interpreted as a curve fitting problem with a frequency
weighting &, (w)/H™(e/*). We propose a new model
reduction method using PSO based on the idea in [5]. In
the new method, the criterion (10) is replaced by

— o An jw Al ygos 2 QU(W)
V_W;L‘G () — G (jw) Frere) (15)

where wy, and wy denote the frequencies of interest. The
reduced-order model G! which has structure (14) is opti-
mized.

4.4 Initial value

From the frequency response of the high-order model,
a transfer function of the system can be approximated by
modal analysis or broken line approximation. These ap-
proximated transfer function is available for the initial
value of a; and b; in Eq.(14). Initial values of the PSO
are arranged around the approximated transfer function.
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Fig.1 Input and output data of the simulation

5. NUMERICAL EXAMPLES

5.1 Numerical simulation
5.1.1 Identification object
Suppose a continuous-time system described by

B(s)
Gs) = ®
where
A(s) = %+ 11s% + 12438s* + 628645°
+490009652 + 50016005 + 19200000
B(s) = 6000s* + 33200s°

424680005 + 409008005 + 19200000.

This system is 6th-order system, and its natural frequen-
cies are w = 2, 20, 110 rad/s. Because the bandwidth
of this system is high and the system has three resonance
modes, this system is difficult to identify.

The true system is discretized using Zeroth-Order-
Hold with sampling interval T' = 0.1s. Then, the discrete
system

G0 =42

is obtained. In this section, the output error form
y(k) = G(q)u(k) + e(k),

is assumed.

5.1.2 System identification condition

The input signal u (k) was a GBN (Generalized Binary
Noise) with average switch time of 4 samples. The iden-
tification time was 40000 s. The disturbance power was
30 % of that of noise-free output.

The input-output data is shown in Fig.1. First, a 200th-
order ARX model was estimated based on the input-
output data. The estimated high-order ARX model was
reduced by following the three methods:

(1) The proposed method : PSO with criterion (15)
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Fig.2 The frequency responses by the proposed method

(red), the conventional method (1) (green), the con-
ventional method (2) (blue), and high-order model

Table | Comparison of errors in the frequency domain

Method Mean value of criterion
Proposed method 35.8
Conventional method (1) 317
Conventional method (2) 1100

(i1) The conventional method (1) : Output error sys-
tem identification method [3]

(iii) The conventional method (2) : PSO with criterion
(13) [5].

These methods were compared by Bode diagram and
the square sum of difference between reduced model and
high order model at each frequency :

wH
Vo= Y 1G"(¢) = G, (16)
Ww=wr,
where wr=1 rad/s and wy=118 rad/s. 245 points of
evaluation between wy, and wy were utilized.

It is noted that PSO’s parameters were the same values
as [5] and the number of particles was 200, the number
of iterations was 300. This simulation ran for ten times,
and the mean value of (16) was compared.

5.1.3 Identification results

Frequency responses of the estimated models are
shown in Fig.2. The proposed method could identify the
frequency response of high-order model over wide fre-
quency range. However, the conventional method (1)
couldn’t identify in the low frequency and the conven-
tional method (2) couldn’t identify the second resonance
peak of the system.

The mean values of the evaluation criterion (16) are
summarized in Table 1. For the narrow frequency band,
the effectiveness of the conventional method (1) is val-
idated [3]. However, for the broad frequency band like
this simulation case, the accuracy of the method deteri-
orates because this method is based on discrete system
identification which is influenced by sampling interval.
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Fig.3 Input and Output data of a real system
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Fig.4 The frequency responses high-order model (black)
and the reduced model (red)

5.2 Case study

The input and output data which were obtained by sys-
tem identification test for a real system, are shown in
Fig.3. This system had characteristics that the operat-
ing frequency range is broad. Thus, the frequency region
was divided and 100th and 200th ARX model were esti-
mated for low (1Hz) and high (10Hz) frequencies, respec-
tively. The frequency responses of these models are com-
bined and reduced by the proposed method. The reduced
model was 8th order model whose frequency response
was shown in Fig.4. Then, we compared measured output
with simulated output of high-frequency model and re-
duced model, which are shown in Fig.5. A fitting rates of
the high-order ARX model and the reduced model were
50% and 43%, respectively. It is considered that the pro-
posed method works well for the real system.
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Fig.5 Comparison of outputs : measured (black), high-
order model (blue), and low-order model (red).

6. CONCLUSION

We proposed the new method of model reduction for
the minimization problem of asymptotic likelihood func-
tion. This method has two advantages. The first is that the
method can identify the continuous-time model which is
not affected by sampling interval. So, the method can be
used for systems which have broad frequencies of inter-
est. The second is that the asymptotic method assures the
maximum likelihood estimator. However, this can be in-
terpreted that if PSO does not converge to the global min-
imum, the estimate is not maximum likelihood estimator.
In fact, the ordinary PSO does not always converge to the
global minimum. So, when we use this approach in prac-
tice, we must confirm that the frequency response of the
estimated model sufficiently fits the frequency response
of the high-order model.
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