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Abstract: The objective of our study is to build a precise model by applying the technique of
system identification for the model-based control of a nonlinear robot arm, taking joint-elasticity
into consideration. This paper proposes a systematic identification method, called “decoupling
identification”, for a serial two-link robot arm with elastic joints caused by the Harmonic drive R©
reduction gears. The proposed method serves as an extension of the conventional rigid-joint-
model-based identification. The robot arm is treated as a serial two-link two-inertia system with
nonlinearity. The decoupling identification method using link-accelerometer signals enables the
serial two-link two-inertia system to be divided into two linear one-link two-inertia systems.
The MATLAB R©’s commands for state-space model estimation are utilized in the proposed
method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients
and joint-spring coefficients are estimated through the identified one-link two-inertia systems.
Experimental results using a SCARA-type planar two-link robot arm with elastic reduction
gears showed an accuracy of the proposed identification method.

Keywords: Robot arms; Nonlinear systems; Mechanical resonance; Frequency response;
Multivariable systems; Closed-loop identification; Nonlinear optimization; MATLAB.

1. INTRODUCTION

The industrial robots with serial links, called SCARA (Se-
lective Compliant Assembly Robot Arm) or PUMA (Pro-
grammable Universal Manipulation Arm), are widely used.
Nowadays, the robots are required to be controlled with
high acceleration and suppressed vibration. The dynamic
model-based control considering the joint-elasticity of the
robot (Ott (2008)) is necessary in order to satisfy this
requirement. Although rigid-joint-model-based identifica-
tion has been researched for the last two decades (Khalil
et al. (2002)), the field of elastic-joint-model-based iden-
tification is still in its infancy. Albu-Schäffer et al. (2001)
showed an simple identification method for a 7dof elastic-
joint robot using joint torque sensors, motor encoders, link
encoders and motor brakes. However, coupled vibration
effects caused by the elastic joints are not considered.

The objective of our study is to build a precise model
by applying the technique of system identification for
the model-based control of a nonlinear robot arm, taking
joint-elasticity into consideration. This paper proposes a
systematic identification method, called “decoupling iden-
tification”, for a serial two-link robot arm with elastic
joints caused by the Harmonic drive R© reduction gears.
The proposed method serves as an extension of the con-
ventional rigid-joint-model-based identification. The robot
arm is treated as a serial two-link two-inertia system
with nonlinearity. The decoupling identification method
using link-accelerometer signals enables the serial two-
link two-inertia system to be divided into two linear one-
link two-inertia systems. The MATLAB R©’s commands for

state-space model estimation are utilized in the proposed
method. Physical parameters such as motor inertias, link
inertias, joint-friction coefficients and joint-spring coeffi-
cients are estimated through the identified one-link two-
inertia systems.

In the sequel, the proposed “decoupling identification”
method is described in detail. Experiments using a
SCARA-type planar two-link robot arm with elastic re-
duction gears are conducted to show an accuracy of the
proposed identification method.

2. TARGET SYSTEM

In this paper, a controlled object is the planar serial two-
link robot arm with elastic joints shown in Fig. 1. A DC
motor drives each joint with the Harmonic drive R© gear
that behaves as an elastic spring element. The Harmonic
drive R© has nonlinear spring characteristics approximated
by three linear spring coefficients shown in Fig. 2. The arm
mechanism is similar in structure to the SCARA robot’s
1st and 2nd links. This means that two one-link two-
inertia systems are located in series. The authors call the
mechanism a “serial two-link two-inertia system” (Oaki
et al. (2008)). The drive systems for the 1st and 2nd joints
have identical structures. However, the 2nd joint performs
not only rotational motion but also translational motion.
The coupled vibrational characteristics of the 2nd joint are
more complicated than those of the 1st joint.

Payloads made of five brass disks (1 kg per disk) are
attached at the tip of the 2nd link. The payloads can
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Fig. 1. Planar serial two-link robot arm with elastic joints.

Input torque

Torsional angle

Fig. 2. Nonlinear chacteristics of Harmonic drive R©.

be changed in the range of 5 kg to 0 kg. Each motor
has a built-in rotary encoder for measuring the motor
rotation angle. An accelerometer (bandwidth : 300 Hz) for
measuring the link translational acceleration is mounted
on each link. Angular acceleration of each link is computed
by the coordinate transformation. Angular velocity of each
link is computed by the sensor-fusion operation using the
difference of the encoder signal with a low-pass filter and
the integration of the angular acceleration signal with a
high-pass filter, described below. A rate gyro (bandwidth :
5 Hz) mounted on each link is only used for testing the
accuracy of the link-angular-velocity computation.

The link angular accelerations and velocities are utilized
for computing the nonlinear interaction torques between
two links. The link angular velocities in addition to the
motor angular velocities are useful for improving identifi-
cation accuracy. A real-time Linux PC is utilized for arm
control and the data collection for identification.

3. DYNAMIC MODEL OF SERIAL TWO-LINK
TWO-INERTIA SYSTEM

The dynamic model of the serial two-link two-inertia sys-
tem (Ott (2008)) is given by

MM θ̈M + DM θ̇M + fM sgn(θ̇M )
= Eu − NG[KG(NGθM − θL)

+ DG(NGθ̇M − θ̇L)] (1)

ML(θL)θ̈L + cL(θ̇L, θL) + DLθ̇L

= KG(NGθM − θL) + DG(NGθ̇M − θ̇L) (2)

„M = [θM1, θM2]
T : motor rotation angle (1, 2 : link number)

„L = [θL1, θL2]T : link rotation angle

ML(„L) ∈ R2×2: link inertia matrix

cL(„̇L, „L) ∈ R2×1: Coriolis and centrifugal force vector

MM = diag(mM1, mM2): motor-side inertia

DM = diag(dM1, dM2): motor-side viscous friction coefficient

DL = diag(dL1, dL2): link-side viscous friction coefficient

KG = diag(kG1, kG2): gear-spring coefficient

DG = diag(dG1, dG2): gear-dumping coefficient

NG = diag(nG1, nG2): gear-reduction ratio (nG1, nG2 ≤ 1)

fM = [fM1, fM2]
T : motor-side Coulomb friction torque

E = diag(e1, e2): torque / input-voltage coefficient

u = [u1, u2]T : input voltage (motor-current control reference).

The link inertia matrix is given by

ML(θL) =
[
α + β + 2γ cos(θL2) β + γ cos(θL2)

β + γ cos(θL2) β

]
, (3)

where α, β, and γ are the base dynamic parameters (Khalil
et al. (2002)) of the two-link robot arm. For convenience,
mL1 ≡ α+β +2γ is defined for the maximum value of the
element (1, 1) in the link inertia matrix. Also, mL2 ≡ β is
defined for the constant value of the element (2, 2).
The Coriolis and centrifugal force vector is given by

cL(θ̇L, θL) =
[−γ(2θ̇L1θ̇L2 + θ̇2

L2) sin(θL2)
γθ̇2

L1 sin(θL2)

]
. (4)

Since the torsional angles of the elastic joints are very
small, the trigonometric functions cos(θL2) and sin(θL2)
can be computed using the approximation θL2 = nG2θM2.
This paper proposes an accurate estimation method for
the physical parameters that appear in (1) and (2). It is
necessary to estimate β and γ previously for the proposed
method. Therefore, the rigid-joint model is required using
the approximation θM = N−1

G θL in (1) and (2) as

M(θL)θ̈L + cL(θ̇L, θL) + Dθ̇L

+ fM sgn(θ̇M )N−1
G = EuN−1

G (5)
M(θL) =[

α + β + 2γ cos(θL2) + mM1/n2
G1 β + γ cos(θL2)

β + γ cos(θL2) β + mM2/n2
G2

]
(6)

D = diag(dL1 + dM1/n2
G1, dL2 + dM2/n2

G2), (7)

where M(θL) and D are the inertia matrix and viscous-
friction coefficient matrix respectively. The parameters in
(5) can be estimated by the conventional rigid-joint-model-
based identification method (Khalil et al. (2002)).

4. SIGNAL PROCESSING FOR MEASURING
LINK-SIDE STATE VARIABLES

Each of the link angular accelerations is computed by
the coordinate transformation of the link translational
accelerations using the accelerometer signals as

θ̈L1 =
a1

la1
(8)

θ̈L2 =
a2

la2
− a1

la1
− a1

la2
cos(nG2θM2)

− la1

la2
θ̇2

L1 sin(nG2θM2) (9)

where a1, a2: link angular acceleration (1, 2 : link number)

la1, la2: mouting distance of accelerometer from each joint.
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Fig. 3. Outline of the proposed identification method.
Each of the link angular velocities is computed by the
sensor fusion operation using the difference of the encoder
signal with a low-pass filter GL(s) = 1/(1 + TV s) and the
integration of the angular acceleration signal with a high-
pass filter GH(s) = 1 − GL(s) as

θ̇Li =
1

1 + TV s
(θ̇Mi + TV θ̈Li) (i = 1, 2) (10)

where TV is a time constant for low-pass and high-pass filters.

5. DECOUPLING IDENTIFICATION PROCEDURE
FOR SERIAL TWO-LINK TWO-INERTIA SYSTEM

The proposed identification method enables the serial
two-link two-inertia system (1) and (2) to be divided
into two linear one-link two-inertia systems. The method
consists of the three steps shown in Fig. 3. The first step
is the physical parameter estimation for the rigid-joint
model. The second step is the state-space model estimation
for each of the links based on the elastic-joint model.
The third step is the physical parameter estimation for
the elastic-joint model via two single-input single-output
transfer functions converted from the state-space models.
It is assumed that the nonlinear spring coefficient can be
estimated as a linear parameter with constant-amplitude
input using a pseudo random binary signal (PRBS). For
example, the maximum spring coefficient K3 shown in
Fig. 2 can be estimated with a large amplitude PRBS.

5.1 Physical parameter estimation for rigid-joint model

It is necessary to estimate β and γ in (5) previously for
the proposed method. The conventional rigid-joint-model-
based identification using the least-squares method (Khalil
et al. (2002)) can be applied to estimate the physical
parameters in (5) using arbitrary motion data of the two-
link robot arm. The nonlinear interaction torques between
two links are computable using the estimated β̂ and γ̂
and the link angular accelerations and velocities. This
fact plays an important role in the proposed decoupling
identification method. The estimated Coulomb friction
torque should be removed from the motor input data for
the state-space model estimation in the next subsection.

5.2 State-space model estimation for elastic-joint model

The proposed decoupling identification method enables
the serial two-link two-inertia system (1) and (2) to be
divided into two linear one-link two-inertia systems. Using
(1) and (2), the state-space model expression for the 1st
joint is obtained as

ẋ1 = A1x1 + B1

[
u1

τ1

]
, A1 ∈ R4×4, B1 ∈ R4×2 (11)

y1 = C1x1, C1 ∈ R2×4 (12)

x1 ≡ [θM1, θL1, θ̇M1, θ̇L1]T

y1 ≡ [θ̇M1, θ̇L1]T

τ1 = −(β̂ + γ̂ cos(θL2))θ̈L2

+ γ̂(2θ̇L1θ̇L2 + θ̇2
L2) sin(θL2), (13)

where τ1 is the nonlinear interaction torque from the 2nd
link, computed using the link angular accelerations and
velocities. The MATLAB R©’s “pem” or “n4sid” command
(Ljung (2007)) is applicable to estimate the state-space
model (11) and (12). The estimated model has two inputs,
two outputs and four state variables. In this case, the
motor input u1 and the computed torque τ1 are employed
as inputs for linearizing and decoupling in the multi-input
identification. Furthermore, the link and motor angular
velocity are employed as outputs for improving accuracy
in the multi-output identification.

It is required that the element (1, 1) in (3) is constant
during the motion for the linear estimation commands. It
is also required for τ1 to have “frequency richness condi-
tion” for accurate identification. Therefore, it is necessary
to investigate the element (1, 1) in (3), and the power
spectral density of τ1 using experimental data. It is the
same deriving procedure for the 2nd joint using (1) and
(2). The nonlinear interaction torque from the 1st link
can be computed using the link angular accelerations and
velocities as

τ2 = −(β̂ + γ̂ cos(θL2))θ̈L1 − γ̂θ̇2
L1 sin(θL2). (14)

5.3 Physical parameter estimation for elastic-joint model

Four single-input single-output transfer functions are ob-
tained by converting from the state-space model (11) and
(12) for the 1st joint as

θ̇M1(s) =G11(s) u1 + G12(s) τ1 (15)

θ̇L1(s) =G21(s) u1 + G22(s) τ1. (16)
The transfer function G11(s) from motor input u1 to motor
angular velocity θ̇M1 is expressed using the six physical
parameters as

G11(s) =
b0 + b1s + b2s

2

a0 + a1s + a2s2 + a3s3
(17)

where a0 = dM1 + n2
G1dL1

a1 = mM1 + n2
G1mL1

+ (n2
G1dG1dL1 + dM1dL1 + dM1dG1)/kG1

a2 = (mM1dL1 + mM1dG1

+ mL1dM1 + n2
G1mL1dG1)/kG1

a3 = mM1mL1/kG1

b0 = 1, b1 = (dL1 + dG1)/kG1, b2 = mL1/kG1.
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A set of six simultaneous equations is obtained by the
coefficient comparison using (17) and the transfer function
conversion from the estimated state-space model by the
subspace identification method. The six physical parame-
ters are obtained by solving the simultaneous equations.

However, when the sampling rate for identification is se-
lected to be fast for estimating the vibrational character-
istics caused by the elastic joints, the results in the low-
frequency region may be inaccurate. In order to modify
the low-frequency region of the estimated transfer function
(17), the first-order lag element of the denominator is
replaced using the estimated physical parameters for the
rigid-joint model above as

G11(s) =
b0 + b1s + b2s

2

(c0 + c1s)(d0 + d1s + d2s2)
(18)

where c0 = dM1 + n2
G1dL1, c1 = mM1 + n2

G1mL1, d0 = 1.

This approximation is valid when the cut-off frequency of
the first-order lag element is low enough compared with
the frequency of the vibrational characteristics. The six
physical parameters for the 1st joint are now obtained by
solving (17) and (18). It is the same deriving procedure for
the 2nd joint.

Furthermore, fine tuning of the estimated physical param-
eters is performed using closed-loop simulations with the
nonlinear least-squares optimization (Mathworks (2007)).
The parameter-search ranges are set to be small to en-
sure the convergence. All physical parameters are simul-
taneously optimized except the coulomb friction torque
because of its nonlinearity.

6. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed decoupling identification method was ver-
ified through experiments performed using the SCARA-
type planar two-link robot arm with 5 kg payload (Fig. 1).

Firstly, the physical parameter estimation for the rigid-
joint model was performed. Secondly, a PRBS was applied
to the 1st joint by open-loop control as input data for iden-
tification while the 2nd joint was free because of no control.
The sampling time for input and output data was set to
0.025 ms. Since the PRBS (period : 1023) was produced at
1 ms intervals, data collection continued for 1.023 s. The
sampling time 1ms was changed to 2ms using decimation.
The PRBS amplitude was set to 10.0 V (maximum). These
identification conditions were determined by some trial
and error. Fig. 4 shows the PRBS input data (first 0.3 s of
1.023 s). Fig. 5 shows nonlinear interaction torque data and
its power spectral density. Although the spectral density is
somewhat bumpy, it is satisfactory in practice as another
input data for multi-input identification. It was checked
the cosine of the 2nd link angle was changing with value of
0.999 or more, during the 1st link motion for identification.
Therefore, the element (1, 1) in (3) is regarded as constant.

Two-input two-output state-space model can be estimated
using the input and output data by the MATLAB R©’s
“pem” command (Ljung (2007)). In Fig. 6, the solid lines
show the estimated frequency response from motor in-
put u1 to motor angular velocity θ̇M1. The vibrational
characteristics of a one-link two-inertia system such as
(17) are shown. In Fig. 6, the lines show the frequency

response after the modification using (18). Fig. 7 shows
the optimization-based fine tuning of the estimated phys-
ical parameters using the 1st-link angular-velocity step
responses of the real arm and simulation. In Fig. 6, the
chain lines show the optimized frequency response after the
nonlinear least-squares optimization (Mathworks (2007)).

Fig. 8 shows examples for model accuracy validation us-
ing velocity step responses for the 1st link. The good
agreement between the real arm and simulation using the
estimated physical parameters demonstrates the accuracy
of the proposed decoupling identification method. Also,
Fig. 9 shows the typical vibrational characteristics of the
one-link two-inertia system for the 2nd link.

In Fig. 10, the solid lines estimated by the proposed decou-
pling identification method, using the computed torques
and motor inputs, show the typical characteristics of the
one-link two-inertia systems. The dashed lines estimated
by the method that utilizes only motor inputs cannot ex-
press the characteristics because of the interaction torques.
These phenomena are remarkable at the 2nd link.

Fig. 11 shows effective examples for multi-output identi-
fication for the 1st link under changing payload (5 kg–
0 kg). The right-hand figures in Fig. 11 show the 2-output
identification using the link angular velocity in addition to
the motor angular velocity faithful to payload changing.

Next, a PRBS was applied to the 1st (2nd) joint by open-
loop control as input data for identification while the
2nd (1st) joint was locked by closed-loop control using PI
velocity servos. Fig. 12 shows nonlinear interaction torque
data and its power spectral density. Although the spectral
density is small in the low-frequency region compared with
Fig. 5, the left-hand figures in Fig. 13 show the proposed
method also works as closed-loop identification using the
“pem” command. As opposed to it, the right-hand figures
in Fig. 13 show inaccurate results using the “n4sid” com-
mand. The “pem” command is powerful because of the
iterative prediction-error minimization based on the initial
state-space model estimated using the “n4sid” command.

Finally, Fig. 14 shows the variations of the estimated fre-
quency responses under changing the PRBS-input am-
plitude. Fig. 15 also shows the plots for squares of the
estimated anti-resonant angular frequency under changing
the PRBS-input amplitude. This “square” operation is
because of the fact that the anti-resonance frequency is
proportional to square-root of the joint-spring coefficient.
These figures demonstrate the nonlinear characteristics of
the Harmonic drive R© shown in Fig. 2.

7. CONCLUSION

Experimental results using a SCARA-type planar two-link
robot arm with elastic reduction gears show the accuracy
of the proposed “decoupling identification” method. The
precise model is obtained by applying the technique of
system identification for the model-based control of a
nonlinear robot arm, taking joint-elasticity into consider-
ation. Although the method was prepared as open-loop
identification, it was found that the method also worked
as closed-loop identification in this paper. Therefore, it is
applicable to a PUMA-type vertical two-link robot arm
which needs to maintain the link-posture under gravity.
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Fig. 4. Pseudo random binary signal (PRBS) input data
for 1st link identification (first 0.3 s of 1.023 s).
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Fig. 5. Nonlinear interaction torque data for 1st link
identification and its power spectral density, where
2nd link is free.
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Right: 2 outputs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−500

0

500

Time [s]

N
o
n
l
i
n
e
a
r
 
i
n
t
e
r
a
c
t
i
o
n
 
t
o
r
q
u
e
 

0 50 100 150 200 250
0

20

40

60

80

Frequency [Hz]

P
o
w
e
r
/
F
r
e
q
 
[
d
B
/
H
z
]

Fig. 12. Nonlinear interaction torque data for 1st link
identification and its power spectral density, where
2nd link is closed-loop controlled.
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Fig. 13. Closed-loop effects against estimated frequency
responses from 1st motor input to motor angular ve-
locity, where 2nd link is free or closed-loop controlled.
Left: “pem” command. Right: “n4sid” command.
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Fig. 14. Variations of estimated frequency responses under
changing PRBS-input amplitude, where payload is
3 kg. Left: 1st link. Right: 2nd link.

2 4 6 8 10 12
1

1.05

1.1

1.15

1.2
x 10

4

Motor torque reference [V]

ω
z
1

2
(
=
k
G
1
/
m
L
1
)

5kg (1st link)

2 4 6 8 10 12
1.1

1.2

1.3

1.4

1.5

1.6
x 10

4

Motor torque reference [V]

ω
z
1

2
(
=
k
G
1
/
m
L
1
)

3kg (1st link)

2 4 6 8 10 12
1.6

1.7

1.8

1.9

2

2.1
x 10

4

Motor torque reference [V]

ω
z
1

2
(
=
k
G
1
/
m
L
1
)

1kg (1st link)

1 2 3 4 5 6
2.7

2.8

2.9

3

3.1

3.2
x 10

4

Motor torque reference [V]

ω
z
2

2
(
=
k
G
2
/
m
L
2
)

5kg (2nd link)

1 2 3 4 5 6

3

3.5

4
x 10

4

Motor torque reference [V]

ω
z
2

2
(
=
k
G
2
/
m
L
2
)

3kg (2nd link)

1 2 3 4 5 6
3.6

3.8

4

4.2

4.4

4.6
x 10

4

Motor torque reference [V]

ω
z
2

2
(
=
k
G
2
/
m
L
2
)

1kg (2nd link)

Fig. 15. Plots for squares of estimated anti-resonant angu-
lar frequency under changing PRBS-input amplitude.
Left: 1st link. Right: 2nd link.
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